Radiation Shields for Air Temperature Thermometers

1965 ◽  
Vol 4 (4) ◽  
pp. 544-547 ◽  
Author(s):  
M. Fuchs ◽  
C. B. Tanner
2008 ◽  
Vol 25 (11) ◽  
pp. 2145-2151 ◽  
Author(s):  
Matthias Mauder ◽  
R. L. Desjardins ◽  
Zhiling Gao ◽  
Ronald van Haarlem

Abstract A spatial network of 25 air temperature sensors was deployed over an area of 3.5 km × 3.5 km of agricultural land, aiming to calculate the sensible heat flux by spatial averaging instead of temporal averaging. Since temperature sensors in naturally ventilated solar radiation shields were used for these measurements, a correction for radiative heating had to be applied. In this study, the approach of Anderson and Baumgartner was adapted to the cube-shaped HOBO solar radiation shields. This semiempirical correction depends on the shield’s area normal to the sun in addition to solar radiation and wind speed. The required correction coefficients, which can be universally applied for this type of shield, were obtained through comparison with fan-aspirated temperature measurements at one site. The root-mean-square error of the HOBO temperature measurements was reduced from 0.49° to 0.15°C after applying this radiation correction.


2014 ◽  
Vol 31 (6) ◽  
pp. 1460-1468 ◽  
Author(s):  
Xinghong Cheng ◽  
Debin Su ◽  
Deping Li ◽  
Lu Chen ◽  
Wenjing Xu ◽  
...  

Author(s):  
R. E. Worsham ◽  
J. E. Mann ◽  
E. G. Richardson

This superconducting microscope, Figure 1, was first operated in May, 1970. The column, which started life as a Siemens Elmiskop I, was modified by removing the objective and intermediate lenses, the specimen chamber, and the complete vacuum system. The large cryostat contains the objective lens and stage. They are attached to the bottom of the 7-liter helium vessel and are surrounded by two vapor-cooled radiation shields.In the initial operational period 5-mm and 2-mm focal length objective lens pole pieces were used giving magnification up to 45000X. Without a stigmator and precision ground pole pieces, a resolution of about 50-100Å was achieved. The boil-off rate of the liquid helium was reduced to 0.2-0.3ℓ/hour after elimination of thermal oscillations in the cryostat. The calculated boil-off was 0.2ℓ/hour. No effect caused by mechanical or electrical instability was found. Both 4.2°K and 1.7-1.9°K operation were routine. Flux pump excitation and control of the lens were quite smooth, simple, and, apparently highly stable. Alignment of the objective lens proved quite awkward, however, with the long-thin epoxy glass posts used for supporting the lens.


2018 ◽  
Vol 14 (1) ◽  
pp. 44-57
Author(s):  
S. N. Shumov

The spatial analysis of distribution and quantity of Hyphantria cunea Drury, 1973 across Ukraine since 1952 till 2016 regarding the values of annual absolute temperatures of ground air is performed using the Gis-technologies. The long-term pest dissemination data (Annual reports…, 1951–1985; Surveys of the distribution of quarantine pests ..., 1986–2017) and meteorological information (Meteorological Yearbooks of air temperature the surface layer of the atmosphere in Ukraine for the period 1951-2016; Branch State of the Hydrometeorological Service at the Central Geophysical Observatory of the Ministry for Emergencies) were used in the present research. The values of boundary negative temperatures of winter diapause of Hyphantria cunea, that unable the development of species’ subsequent generation, are received. Data analyses suggests almost complete elimination of winter diapausing individuals of White American Butterfly (especially pupae) under the air temperature of −32°С. Because of arising questions on the time of action of absolute minimal air temperatures, it is necessary to ascertain the boundary negative temperatures of winter diapause for White American Butterfly. It is also necessary to perform the more detailed research of a corresponding biological material with application to the freezing technics, giving temperature up to −50°С, with the subsequent analysis of the received results by the punched-analysis.


Sign in / Sign up

Export Citation Format

Share Document